MathematicsAlgebra

Mathematics

Algebra

(reference 2.1)

Laws

Commutativea+b=b+a,ab=baa+b = b+a ,\, ab = ba
Associativea+(b+c)=(a+b)+ca+(b+c) = (a+b)+c
Distributivea(b+c)=ab+aca(b+c) = ab+ac

Identities

ExponentsLogarithms
axay=ax+ya^x a^y = a^{x+y}logbb=1\log_b{b} = 1
(ab)x=axbx\left( ab \right) ^x = a^x b^x logb1=0\log_b{1} = 0
(ax)y=axy\left( a^x \right) y = a^xy logb(MN)=logbM+logbN \log_b \left( MN \right) = log_b{M} + log_b{N}
amn=(am)na^{mn} = \left( a^m \right) ^n logb(MN)=logbMlogbN\log_b \left( \frac{M}{N} \right) = \log_b{M} - \log_b{N}
a0=1a^0 = 1 If a0a \neq 0logb(Mp)=plogbM\log_b \left( M^p \right) = p \log_b{M}
ax=1axa^{-x} = \frac{1}{a^x} logb(1M)=logbM\log_b \left( \frac{1}{M} \right) = -\log_b{M}
axay=axy\frac{a^x}{a^y} = a^{x-y}logbMq=1qlogbM\log_b{ \sqrt [q]{M}} = \frac{1}{q} \log_b{M}
abx=(ax)(bx)\sqrt[x]{ab} = \left( \sqrt[x]{a} \right) \left( \sqrt[x]{b} \right)logbM=(logcM)(logbc)=logcMlogcb\log_b{M} = \left(\log_c{M} \right) \left(\log_b{c} \right)= \frac{\log_c{M}}{\log_c{b}}
axy=axy=(ay)xa^{\frac{x}{y}} = \sqrt[y]{a^x} = \left( \sqrt[y]{a} \right)^x
a1y=aya^{\frac{1}{y}} = \sqrt[y]{a}
(ax)(ay)=a(1x+1y)=ax+yxy\left( \sqrt[x]{a} \right) \left( \sqrt[y]{a} \right) = a^{\left( \frac{1}{x} + \frac{1}{y} \right)} = \sqrt[xy]{a^{x+y}}
a+b=a+b+2ab \sqrt{a} + \sqrt{b} = \sqrt{a + b + 2\sqrt{ab}}

Equations

Quadratic Equation

ax2+bx+c=0ax^2 + bx + c =0

Two roots, both real or both complex

x1,2=b±b24ac2ax_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Cubic Equation

y3+py2+qy+r=0y^3 + py^2 + qy + r = 0

Three roots, all real or one real & two complex

Let y=xp3y = x - \frac{p}{3} to rewrite equation in form of x3+ax+b=0x^3 + ax + b = 0

where a=3qp23a = \frac{3q - p^2}{3} and b=2p39pq27r27b = \frac{2p^3 - 9pq - 27r}{27}

let

A=b2+b24+a3273 A = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}

and

B=b2b24+a3273B =\sqrt[3]{-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}

then

x1=A+Bx2=(A+B)2+32(AB)x3=(A+B)232(AB)\begin{align} x_1 &= A + B\\ x_2 &= \frac{-(A + B)}{2} + \frac{\sqrt{-3}}{2} (A - B)\\ x_3 &= \frac{-(A + B)}{2} - \frac{\sqrt{-3}}{2} (A - B) \end{align}

Special cases:

If b24+a327<0\frac{b^2}{4} + \frac{a^3}{27} < 0 , then the real roots are

x1,2,3=2a3cos(ϕ3+120°k)x_{1,2,3} = 2 \sqrt{\frac{-a}{3}} cos \left( \frac{\phi}{3} + 120° k \right)

where k=0,1,2k = 0,1,2

and

cosϕ=+b24a327      if  b<0cos\phi = + \sqrt{\frac{ \frac{b^2}{4} }{ \frac{-a^3}{27} }} \;\;\;\text{if}\; b < 0

or

cosϕ=b24a327      if  b>0cos\phi = - \sqrt{\frac{ \frac{b^2}{4} }{ \frac{-a^3}{27} }} \;\;\;\text{if}\; b > 0

If b24+a327>0\frac{b^2}{4} + \frac{a^3}{27} > 0 and a>0a > 0 , the single real root is

x=2a3cot(2ϕ)x = 2 \sqrt{\frac{a}{3}} cot \left( 2\phi \right)

where tanϕ=tanψ3tan\phi = \sqrt[3]{tan\psi}

and

cot(2ψ)=+b24a327      if  b<0 cot \left( 2\psi \right) = + \sqrt{\frac{ \frac{b^2}{4} }{ \frac{-a^3}{27} }} \;\;\;\text{if}\; b < 0

or

cot(2ψ)=b24a327      if  b<0 cot \left( 2\psi \right) = - \sqrt{\frac{ \frac{b^2}{4} }{ \frac{-a^3}{27} }} \;\;\;\text{if}\; b < 0

If b24+a327=0\frac{b^2}{4} + \frac{a^3}{27} = 0, the three real roots are

x1=2a3,  x2,3=+a3      if  b>0x_{1} = -2 \sqrt{\frac{-a}{3}}, \; x_{2,3} = +\sqrt{\frac{-a}{3}} \;\;\; \text{if} \; b > 0

or

x1=+2a3,  x2,3=a3      if  b<0x_{1} = +2 \sqrt{\frac{-a}{3}}, \; x_{2,3} = -\sqrt{\frac{-a}{3}} \;\;\; \text{if} \; b < 0

Quartic (biquadratic) Equation

For

y4+py3+qy2+ry+s=0y^4 + py^3 + qy^2 + ry + s = 0

let y=xp4y = x - \frac{p}{4} to rewrite equation as

x4+ax2+bx+c=0x^4 + ax^2 + bx + c = 0

let ll, mm, nn denote roots of the following resolvent cubic:

t3+12at2+116(a24c)t164b2=0t^3 + \frac{1}{2} at^2 + \frac{1}{16} \left( a^2 - 4c \right) t - \frac{1}{64}b^2 = 0

The roots of the quartic are

x1=+l+m+nx_{1} = + \sqrt{l} + \sqrt{m} + \sqrt{n} x2=+lmnx_{2} = + \sqrt{l} - \sqrt{m} - \sqrt{n} x3=l+mnx_{3} = - \sqrt{l} + \sqrt{m} - \sqrt{n} x4=lm+nx_{4} = - \sqrt{l} - \sqrt{m} + \sqrt{n}