MathematicsTrigonometry

Trigonometery

For any right triangle with hypotenuse hh, an acute angle α\alpha, side length oo opposite from α\alpha, and side length aa adjacent to α\alpha, the following terms are defined:

sine α= sinα = ohcosine α= cosα = ahtangent α= tanα = oa=sinαcosαcotangent α= cotα =ctn α = ao=1tanα=cosαsinαsecant α=secα=ha=1cosαcosecant α=cscα=ho=1sinαexsecant α=exsec α=secα1versine α=vers α=1cosαcoversine α=covers α=1sinαhaversine α=hav α=vers α2\begin{align} \text{sine } \alpha &= \sin{\alpha} = \frac{o}{h} \\ \text{cosine } \alpha &= \cos{\alpha} = \frac{a}{h} \\ \text{tangent } \alpha &= \tan{\alpha} = \frac{o}{a} = \frac{\sin{\alpha}}{cos{\alpha}} \\ \text{cotangent } \alpha &= \cot{\alpha} = \text{ctn } \alpha = \frac{a}{o} = \frac{1}{\tan{\alpha}} = \frac{\cos{\alpha}}{\sin{\alpha}} \\ \text{secant } \alpha &= \sec{\alpha} = \frac{h}{a} = \frac{1}{\cos{\alpha}} \\ \text{cosecant } \alpha &= \csc{\alpha} = \frac{h}{o} = \frac{1}{\sin{\alpha}} \\ \text{exsecant } \alpha &= \text{exsec } \alpha = \sec{\alpha} - 1 \\ \text{versine } \alpha &= \text{vers } \alpha = 1 - \cos{\alpha} \\ \text{coversine } \alpha &= \text{covers } \alpha = 1 - \sin{\alpha} \\ \text{haversine } \alpha &= \text{hav } \alpha = \frac{\text{vers } \alpha}{2} \\ \end{align}

also defined are the following…

hyperbolic sine of x= sinhx = exex2hyperbolic cosine of x= coshx = ex+ex2hyperbolic tangent of x= tanhx = sinhxcoshx=exexex+excsch x = 1sinhxsech x = 1coshxcoth x = 1tanhx\begin{align} \text{hyperbolic sine of } x &= \sinh{x} = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} \\ \text{hyperbolic cosine of } x &= \cosh{x} = \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} \\ \text{hyperbolic tangent of } x &= \tanh{x} = \frac{\sinh{x}}{\cosh{x}} = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \text{csch } x &= \frac{1}{\sinh{x}} \\ \text{sech } x &= \frac{1}{\cosh{x}} \\ \text{coth } x &= \frac{1}{\tanh{x}} \\ \end{align}

Identities

Pythagorean Identities

sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α\begin{align} \sin^2{\alpha} + \cos^2{\alpha} &= 1 \\ 1 + \tan^2{\alpha} &= \sec^2{\alpha} \\ 1 + \cot^2{\alpha} &= \csc^2{\alpha} \\ \end{align}

Half Angle Identities

sinα2=±1cosα2 (negative if α2 is in quadrant III or IV)cosα2=±1+cosα2 (negative if α2 is in quadrant II or III)tanα2=±1cosα1+cosα (negative if α2 is in quadrant II or IV)\begin{align} \sin{\frac{\alpha}{2}} &= \pm \sqrt{\frac{1 - \cos{\alpha}}{2}} \text{ (negative if } \frac{\alpha}{2} \text{ is in quadrant III or IV)}\\ \cos{\frac{\alpha}{2}} &= \pm \sqrt{\frac{1 + \cos{\alpha}}{2}} \text{ (negative if } \frac{\alpha}{2} \text{ is in quadrant II or III)}\\ \tan{\frac{\alpha}{2}} &= \pm \sqrt{\frac{1 - \cos{\alpha}}{1 + \cos{\alpha}}} \text{ (negative if } \frac{\alpha}{2} \text{ is in quadrant II or IV)}\\ \end{align}

Double-Angle Identities

sin2α=2sinαcosαcos2α=2cos2α1=12sin2α=cos2αsin2αtan2α=2tanα1tan2α\begin{align} \sin{2\alpha} &= 2\sin{\alpha}\cos{\alpha}\\ \cos{2\alpha} &= 2\cos^2{\alpha} - 1 = 1 - 2\sin^2{\alpha} = \cos^2{\alpha} - \sin^2{\alpha}\\ \tan{2\alpha} &= \frac{2\tan{\alpha}}{1 - \tan^2{\alpha}}\\ \end{align}

n-Angle Identities

sin3α=3sinα4sin3αcos3α=4cos3α3cosαsinnα=2sin((n1)α)cosαsin(n2)αcosnα=2cos((n1)α)cosαcos(n2)α\begin{align} \sin{3\alpha} &= 3\sin{\alpha} - 4\sin^3{\alpha}\\ \cos{3\alpha} &= 4\cos^3{\alpha} - 3\cos{\alpha}\\ \sin{n\alpha} &= 2\sin\big(\left(n-1\right)\alpha\big) \cos{\alpha} - \sin(n-2)\alpha\\ \cos{n\alpha} &= 2\cos\big(\left(n-1\right)\alpha\big) \cos{\alpha} - \cos\left(n-2\right)\alpha\\ \end{align}

Two-Angle Identities

sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβsinαsinβtan(α+β)=tanα+tanβ1tanαtanβsin(αβ)=sinαcosβcosαsinβcos(αβ)=cosαcosβ+sinαsinβtan(αβ)=tanαtanβ1+tanαtanβ\begin{align} \sin\left(\alpha + \beta\right) &= \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}\\ \cos\left(\alpha + \beta\right) &= \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}\\ \tan\left(\alpha + \beta\right) &= \frac{\tan{\alpha} + \tan{\beta}}{1 - \tan{\alpha}\tan{\beta}}\\ \sin\left(\alpha - \beta\right) &= \sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta}\\ \cos\left(\alpha - \beta\right) &= \cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}\\ \tan\left(\alpha - \beta\right) &= \frac{\tan{\alpha} - \tan{\beta}}{1 + \tan{\alpha}\tan{\beta}}\\ \end{align}

Sum and Difference Identities

sinα+sinβ=2sinα+β2cosαβ2sinαsinβ=2cosα+β2sinαβ2cosα+cosβ=2cosα+β2sinαβ2cosαcosβ=2cosα+β2sinαβ2tanα+tanβ=sin(α+β)cosαcosβcotα+cotβ=sin(α+β)sinαsinβtanαtanβ=sin(αβ)cosαcosβcotαcotβ=sin(αβ)sinαsinβsin2αsin2β=sin(α+β)sin(αβ)cos2αcos2β=sin(α+β)sin(αβ)cos2αsin2β=cos(α+β)cos(αβ)\begin{align} \sin{\alpha} + \sin{\beta} &= 2\sin{\frac{\alpha + \beta}{2}}\cos{\frac{\alpha - \beta}{2}}\\ \sin{\alpha} - \sin{\beta} &= 2\cos{\frac{\alpha + \beta}{2}}\sin{\frac{\alpha - \beta}{2}}\\ \cos{\alpha} + \cos{\beta} &= 2\cos{\frac{\alpha + \beta}{2}}\sin{\frac{\alpha - \beta}{2}}\\ \cos{\alpha} - \cos{\beta} &= -2\cos{\frac{\alpha + \beta}{2}}\sin{\frac{\alpha - \beta}{2}}\\ \tan{\alpha} + \tan{\beta} &= \frac{\sin\left(\alpha + \beta\right)}{\cos{\alpha}\cos{\beta}}\\ \cot{\alpha} + \cot{\beta} &= \frac{\sin\left(\alpha + \beta\right)}{\sin{\alpha}\sin{\beta}}\\ \tan{\alpha} - \tan{\beta} &= \frac{\sin\left(\alpha - \beta\right)}{\cos{\alpha}\cos{\beta}}\\ \cot{\alpha} - \cot{\beta} &= -\frac{\sin\left(\alpha - \beta\right)}{\sin{\alpha}\sin{\beta}}\\ \sin^2{\alpha} - \sin^2{\beta} &= \sin\left(\alpha + \beta\right) \sin\left(\alpha - \beta\right)\\ \cos^2{\alpha} - \cos^2{\beta} &= -\sin\left(\alpha + \beta\right) \sin\left(\alpha - \beta\right)\\ \cos^2{\alpha} - \sin^2{\beta} &= \cos\left(\alpha + \beta\right) \cos\left(\alpha - \beta\right)\\ \end{align}

Power Identities

sinαsinβ=cos(αβ)cos(α+β)2cosαcosβ=cos(αβ)+cos(α+β)2sinαcosβ=sin(α+β)+sin(αβ)2cosαsinβ=sin(α+β)sin(αβ)2tanαcotα=sinαcscα=cosαsecα=1sin2α=1cos2α2cos2α=1+cos2α2sin3α=3sinαsin3α4cos3α=3cosα+cos3α4sin4α=34cos2α+cos4α8cos4α=3+4cos2α+cos4α8sin5α=10sinα5sin3α+sin5α16cos5α=10cosα+5cos3α+cos5α16\begin{align} \sin{\alpha}\sin{\beta} &= \frac{\cos\left(\alpha - \beta\right) - \cos\left(\alpha + \beta\right)}{2}\\ \cos{\alpha}\cos{\beta} &= \frac{\cos\left(\alpha - \beta\right) + \cos\left(\alpha + \beta\right)}{2}\\ \sin{\alpha}\cos{\beta} &= \frac{\sin\left(\alpha + \beta\right) + \sin\left(\alpha - \beta\right)}{2}\\ \cos{\alpha}\sin{\beta} &= \frac{\sin\left(\alpha + \beta\right) - \sin\left(\alpha - \beta\right)}{2}\\ \tan{\alpha}\cot{\alpha} &= \sin{\alpha}\csc{\alpha} = \cos{\alpha}\sec{\alpha} = 1\\ \sin^2{\alpha} &= \frac{1 - \cos{2\alpha}}{2}\\ \cos^2{\alpha} &= \frac{1 + \cos{2\alpha}}{2}\\ \sin^3{\alpha} &= \frac{3\sin{\alpha} - \sin{3\alpha}}{4}\\ \cos^3{\alpha} &= \frac{3\cos{\alpha} + \cos{3\alpha}}{4}\\ \sin^4{\alpha} &= \frac{3 - 4\cos{2\alpha} + \cos{4\alpha}}{8}\\ \cos^4{\alpha} &= \frac{3 + 4\cos{2\alpha} + \cos{4\alpha}}{8}\\ \sin^5{\alpha} &= \frac{10\sin{\alpha} - 5\sin{3\alpha} + \sin{5\alpha}}{16}\\ \cos^5{\alpha} &= \frac{10\cos{\alpha} + 5\cos{3\alpha} + \cos{5\alpha}}{16}\\ \end{align}

OBLIQUE TRIANGLES

(no right angle, angles A,B,C are opposite of legs a,b,c)

Law of Sines

asinA=bsinB=csinC\frac{a}{\sin{A}} = \frac{b}{\sin{B}} = \frac{c}{\sin{C}}

Law of Cosines
a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosCcosC=a2+b2c22ab\begin{align} a^2 &= b^2 + c^2 - 2bc\cos{A}\\ b^2 &= a^2 + c^2 - 2ac\cos{B}\\ c^2 &= a^2 + b^2 - 2ab\cos{C}\\ \cos{C} &= \frac{a^2 +b^2 -c^2}{2ab}\\ \end{align}
Law of Tangents

aba+b=tanab2tana+b2\frac{a-b}{a+b} = \frac{\tan\frac{a-b}{2}}{\tan\frac{a+b}{2}}

Projection Formulas
a=bcosC+ccosBb=ccosA+acosCc=acosB+bcosA\begin{align} a &= b\cos{C} + c\cos{B}\\ b &= c\cos{A} + a\cos{C}\\ c &= a\cos{B} + b\cos{A}\\ \end{align}
Mollweide’s Check Formulas
abc=sinAB2cosC2a+bc=cosAB2sinC2\begin{align} \frac{a-b}{c} &= \frac{\sin\frac{A-B}{2}}{\cos\frac{C}{2}}\\ \frac{a+b}{c} &= \frac{\cos\frac{A-B}{2}}{\sin\frac{C}{2}}\\ \end{align}