MathematicsStandard Series

Mathematics

Algebra

(reference 2.1)

Laws

Commutativea+b=b+a,ab=baa+b = b+a ,\, ab = ba
Associativea+(b+c)=(a+b)+ca+(b+c) = (a+b)+c
Distributivea(b+c)=ab+aca(b+c) = ab+ac

Identities

ExponentsLogarithms
axay=ax+ya^x a^y = a^{x+y}logbb=1\log_b{b} = 1
(ab)x=axbx\left( ab \right) ^x = a^x b^x logb1=0\log_b{1} = 0
(ax)y=axy\left( a^x \right) y = a^xy logb(MN)=logbM+logbN \log_b \left( MN \right) = log_b{M} + log_b{N}
amn=(am)na^{mn} = \left( a^m \right) ^n logb(MN)=logbMlogbN\log_b \left( \frac{M}{N} \right) = \log_b{M} - \log_b{N}
a0=1a^0 = 1 If (a \neq 0)logb(Mp)=plogbM\log_b \left( M^p \right) = p \log_b{M}
ax=1axa^{-x} = \frac{1}{a^x} logb(1M)=logbM\log_b \left( \frac{1}{M} \right) = -\log_b{M}
axay=axy\frac{a^x}{a^y} = a^{x-y}logbMq=1qlogbM\log_b{\sqrt[q]{M}} = \frac{1}{q} \log_b{M}
abx=(ax)(bx)\sqrt[x]{ab} = \left( \sqrt[x]{a} \right) \left( \sqrt[x]{b} \right)logbM=(logcM)(logbc)=logcMlogcb\log_b{M} = \left(\log_c{M} \right) \left(\log_b{c} \right)= \frac{\log_c{M}}{\log_c{b}}
axy=axy=(ay)xa^{\frac{x}{y}} = \sqrt[y]{a^x} = \left( \sqrt[y]{a} \right)^x
a1y=aya^{\frac{1}{y}} = \sqrt[y]{a}
(ax)(ay)=a(1x+1y)=ax+yxy\left( \sqrt[x]{a} \right) \left( \sqrt[y]{a} \right) = a^{\left( \frac{1}{x} + \frac{1}{y} \right)} = \sqrt[xy]{a^{x+y}}
a+b=a+b+2ab \sqrt{a} + \sqrt{b} = \sqrt{a + b + 2\sqrt{ab}}